配合双光子激发技术,激光共聚扫描显微镜则能更好得发挥功效。那么,什么是双光子激发技术呢?在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子使电子跃迁到较高能级,经过一个很短的时间后,电子再跃迁回低能级同时放出一个波长为长波长一半的光子(P=h/λ)。利用这个原理,便诞生了双光子激发技术。双光子显微镜使用长波长脉冲激光,通过物镜汇聚,由于双光子激发需要很高的光子密度,而物镜焦点处的光子密度是比较高的,所以只有在焦点处才能发生双光子激发,产生荧光,该点产生的荧光再穿过物镜,被光探头接收,从而能够达到逐点扫描的效果。双光子显微镜只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被发动,所以双光子成像更清晰。国内双光子显微镜成像技术

从双光子的原理和特点我们就可以明显的得出双光子的优点:☆穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力,因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题;☆高分辨率:由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为波长3次方的范围内;☆漂白区域小:由于激发只存在于交点处,所以焦点以外的区域都不会发生光漂白现象;☆荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦),这样就提高了对荧光的收集率,而收集率的提高直接导致图像对比度的提高。国外ultimainvestigator双光子显微镜分辨率是多少双光子显微镜使用高能量锁模脉冲激光器。

首先,双光子成像采用波长范围约在700~1000 nm的近红外光激发,在组织中的散射系数较小,穿透性很好,因此非常适合厚样本的观察。同时,由于是近红外光激发,也能避免样品中激发波长较短的自发荧光物质的干扰,可获得较强的荧光信号(如下图)。所以双光子成像具有较深的穿透力和较小的光毒性。通常在活物脑组织中双光子显微镜有效成像深度可达200~500 μm,能够较好地进行三维成像。双光子成像的另一大优势在于精确的空间点聚焦性。一般条件下,物质只会被单光子激发,只有在光子密度足够高的情况下,物质才会吸收两个光子从而被激发,所以,双光子只会在光子密度蕞高的物镜焦点附近发生,很少产生焦平面外的杂散光(如下图)。这种性质既提高了成像质量,也降低了样本的光漂白、光损伤区域。基于这些优势,使得双光子显微镜非常适合对活细胞、活组织进行长时间在体成像。
双光子显微镜的优势相比普通的显微镜电子显微镜可以观察尺度更小的东西,冷冻电镜更是可以观察有活性的生物大分子,而双光子显微镜有什么优势呢?它能做到什么普通光学显微镜做不到的事情吗?原来,双光子显微镜可以精确穿透较厚标本进行定点、观察!由于电磁波的波长越短,粒子性越强,受散射影响也就越大。双光子显微镜将激发光源改为长波长激光,在增加了激光的穿透性的同时还减少了对细胞的毒性。除此之外,因为只有物镜焦点处能发生双光子激发效应,所以扫描的精确度极高,也能提高激发光效率,减少被扫描点之外的荧光物质消耗。双光子显微镜有这么多优点,那么双光子显微镜有哪些应用呢?

双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双(多)光子成像优势在于,具有更深的组织穿透深度,利用红外光,能够在层面检测极限达1mm的组织区域;因信号背景比高,而具有更高的对比度;因激发体积小,具有定点激发的特性,具有更少的光毒性;激发波长由紫外、可见光调整为红外激发,能够更加地安全。双光子显微镜在多个领域研究中已有许多成功实例。进口ultimainvestigator双光子显微镜
双光子显微镜在组织透明化成像中应用。国内双光子显微镜成像技术
双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短激发态后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。因其光损伤小、使得观察荧光细胞成为可能。中国医学科学院医学实验动物研究所-双光子显微镜成像平台借助于双光子显微镜成像技术及不同转基因小鼠开展对多种脏器的成像研究。以小鼠颅内成像为优势,可观察小鼠颅内神经细胞、小胶质细胞/巨噬细胞、周细胞、血管、转移瘤细胞、胶质瘤细胞等的变化情况,在**学、神经生物学、发育生物学、神经退行性疾病等领域具有广泛应用。小鼠其它组织脏器,如脾、颅骨、股骨、胸骨等也可借助本平台进行成像研究。国内双光子显微镜成像技术